MATH 310 — Quiz 4
24 April 2019

Full name: Solutions
This quiz is worth a total of $\mathbf{2 0}$ points.

This quiz has 2 questions.

1. (10 points) Find the eigenvalues and eigenvectors of the following matrix.

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 0 & 1 \\
2 & -2 & 3
\end{array}\right] . \\
& A-\lambda I=\left[\begin{array}{ccc}
2-\lambda & -1 & 1 \\
1 & -\lambda & 1 \\
2 & -2 & 3-\lambda
\end{array}\right] \quad \operatorname{def}(A-\lambda I)=(2-\lambda)(-\lambda)(3-\lambda)-2- \\
& -2+2 \lambda-2(2-\lambda)+(3-\lambda)=(2-\lambda)(-\lambda)(3-\lambda)+(3-\lambda)= \\
& =(3-\lambda)\left(\lambda^{2}-2 \lambda+1\right)=(3-\lambda)(1-\lambda)^{2} \\
& k_{1}=3, \lambda_{2}=1 \leftarrow \text { doable eigenvalue. } \\
& u_{1}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-4 y+2 z=0, y=\frac{z}{2},-x-y+z=0,-x-\frac{z}{2}+\frac{z}{2}=0 \\
& x=\frac{2}{2}\left(\begin{array}{l}
\frac{z}{2} \\
\frac{2}{2} \\
z
\end{array}\right)=2\left(\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right) \quad 0=\left(\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right) . \\
& \text { For } \lambda=1 \\
& V_{2}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -1 & 1 \\
2 & -2 & 2
\end{array}\right] \begin{array}{cc}
R 2-R 1 \\
R 3-2 R 1
\end{array}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& x-y+z=0, x=y-z \rho\left(\begin{array}{c}
y-z \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
y \\
y \\
0
\end{array}\right)+\left(\begin{array}{c}
-z \\
0 \\
z
\end{array}\right)=y\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) . \\
& T \text { hus } V_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \text { and } V_{3}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \text {, }
\end{aligned}
$$

2. (10 points) For matrix \mathbf{A} from problem 1, which of the eigenvalues are complete? Is matrix \mathbf{A} complete ? Is \mathbf{A} diagonalizable? If so, find matrices \mathbf{A} and Λ such that $\mathbf{A}=\mathbf{S} \Lambda \mathbf{S}^{-1}$. Explain your answers.
$\lambda_{1}=3$ the corresponding eigenvalue is $V_{1}=\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right)$. So λ_{1} is complete.
$\lambda_{2}=1$ the corresponding eigenablues are

$$
V_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad V_{3}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \text {, thus } \lambda_{2}=1 \text { is also }
$$

complete.
Since all eigenvalues of A are complete so is A. This implies that A is diagonalizable and

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
\frac{1}{2} & 1 & -1 \\
\frac{1}{2} & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 1 & -1 \\
\frac{1}{2} & 1 & 0 \\
1 & 0 & 1
\end{array}\right]_{0}^{-1}
$$

