This quiz has 2 questions.

1. (10 points) For the following matrices, write the kernel and the image as the span of a finite number of vectors.
(a) $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, (b) $\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4\end{array}\right]$.
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] \stackrel{R 2-2 R 1}{\longmapsto}\left[\begin{array}{cc}\square & 2 \\ 0 & -3\end{array}\right]$

Fop the image we have to take the columns of A for which we have the non-zero pivots

For the kernel we have $A x=0 \quad-3 x_{2}=0 \quad x_{1}=0$ Thus $\operatorname{Im}(A)=\operatorname{spana}\left\{\binom{1}{2},\binom{2}{1}\right\} \quad \operatorname{kev}(A)=\left\{\binom{0}{0}\right\}$.
(b) $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4\end{array}\right] \stackrel{R 2-2 R 1}{R 3-3 R 1}\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & -2 & -2\end{array}\right] \stackrel{R 3-2 R 2}{\longmapsto}\left[\begin{array}{ccc}|1| & 1 & 2 \\ 0 & |-1| & -1 \\ 0 & 0 & 0\end{array}\right]$

For the smaze we need to take the columns of A for which we have the non-zero pivots.
For the kernel we have $A x=0$

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3}=0 \quad x_{2}=-x_{3} \\
&-x_{2}-x_{3}=0 \quad x_{1}-x_{3}+2 x_{3}=0 \quad x_{1}=-x_{3} \\
&\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

Thus, $\operatorname{Im}(A)=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$.

$$
\operatorname{ker}(A)=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)\right\} \text {. }
$$

Definition 1 An inner product on the real vector space V is a pairing that takes two vectors $v, w \in V$ and produces a real number $\langle v, w>\in \mathbb{R}$. The inner product is required to satisfy the following three axioms for all $u, v, w \in V$, and scalars $c, d \in \mathbb{R}$

1. Bilinearity: $\langle c u+d v, w\rangle=c\langle u, w\rangle+d\langle v, w\rangle$, and $\langle u, c v+d w\rangle=c\langle u, v\rangle+d\langle u, w\rangle$
2. Symmetry: $\langle v, w\rangle=\langle w, v\rangle$
3. Positivity: $\langle v, v\rangle>0$ whenever $v \neq 0$, while $\langle 0,0\rangle=0$
4. (10 points) Which of the following formulas for $\langle v, w\rangle$ define inner products on \mathbb{R}^{2}. Explain your answer. You may use the definition above.
(a) $\langle v, w\rangle=v_{1} w_{1}+4 v_{2} w_{2}, \quad$ (b) $\quad\langle v, w\rangle=\left(v_{1}+v_{2}\right)\left(w_{1}+w_{2}\right)$.

$$
u=\binom{u_{1}}{u_{2}} \quad v=\binom{v_{1}}{v_{2}} \quad w=\binom{w_{1}}{w_{2}} \text {. }
$$

(a) Bilineavity: $\left(c u+d v_{1} w\right)=\left(c u_{1}+d v_{1}\right) w_{1}+4\left(\left(u_{2}+d v_{2}\right) w_{2}=\right.$

$$
=c\left(u_{1} w_{1}+4 u_{2} w_{2}\right)+d\left(v_{1} w_{1}+4 v_{2} w_{2}\right)=c\left\langle u_{1} w\right\rangle+d\left\langle v, w^{2}\right\rangle .
$$

The same steps prove $\left\langle u_{1}(v+d w\rangle=(\langle u, v\rangle+d\langle u, v\rangle\right.$.
Symmetry: $\left\langle v_{1} w\right\rangle=v_{1} w_{1}+4 v_{2} w_{2}=w_{1} v_{1}+4 w_{2} v_{2}=2 u_{1}, v_{2}$.
Positivity; $\langle v, v\rangle=v_{1} \cdot v_{1}+4 v_{2} v_{2}=v_{1}{ }^{2}+4 v_{2}{ }^{2}$
when $v \neq 0 \quad v_{1}{ }^{2}+4 v_{2}{ }^{2}>0$ and when $v_{1}=v_{2}=0$

$$
v_{1}^{2}+4 v_{2}^{2}=0
$$

thus $\langle u, r\rangle=v_{1} v_{1}+4 u_{2} v_{2}$ is an saner product
(b) We show that the positivity condition violates,

$$
\langle V, V\rangle=\left(V_{1}+V_{2}\right)\left(V_{1}+V_{2}\right)=\left(V_{1}+V_{2}\right)^{2} .
$$

Note that when $v_{1}=-v_{2}$ for example $\left.v=\binom{1}{-1} \quad \angle v_{1} v\right\rangle=0$ while $v \neq 0$.
Thus $\left\langle u_{1} v^{\prime}=\left(u_{1}+u_{2}\right)\left(v_{1}+v_{2}\right)\right.$ is not an inner product.

