MATH 310 — Quiz 3 $25 \ \mathrm{March} \ 2019$

So utions Full name: <u>So</u> uf (ous This quiz is worth a total of **20 points**.

This quiz has 2 questions.

1. (10 points) For the following matrices, write the kernel and the image as the span of a finite number of vectors.

(ii)
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 4 \end{bmatrix}$
For the image we have to take the column
of **A** for which we have the non-zero fivets
For the kernel ve have $4x=0$ $-3x_{1}=0$ $x_{1}=0$
Thue $\sum m(A) = span \begin{cases} 2 \\ 2 \\ 3 \\ 1 \\ 4 \end{cases}$ $\begin{bmatrix} 1 & 2 \\ 2 \\ 1 \\ 3 \\ 1 \\ 4 \end{bmatrix} \begin{bmatrix} 2 - 2a \\ 2a \\ 2a \\ 2a \\ 2a \\ 3a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2a \\ 2a \\ 2a \\ 3a \end{bmatrix} \begin{bmatrix} 2a \\ 2a \\ 2a \\ 2a \\ 2a \\ 3a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2a \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 1a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a \end{bmatrix} \begin{bmatrix} 2a \\ 3a \\ 4a$

Definition 1 An inner product on the real vector space V is a pairing that takes two vectors $v, w \in V$ and produces a real number $\langle v, w \rangle \in \mathbb{R}$. The inner product is required to satisfy the following three axioms for all $u, v, w \in V$, and scalars $c, d \in \mathbb{R}$

- $1. \ Bilinearity: < cu + dv, w > = c < u, w > + d < v, w >, \ and < u, cv + dw > = c < u, v > + d < u, w >$
- 2. Symmetry: $\langle v, w \rangle = \langle w, v \rangle$

-

- 3. Positivity: $\langle v, v \rangle > 0$ whenever $v \neq 0$, while $\langle 0, 0 \rangle = 0$
- 2. (10 points) Which of the following formulas for $\langle v, w \rangle$ define inner products on \mathbb{R}^2 . Explain your answer. You may use the definition above.
 - (a) $\langle v, w \rangle = v_1 w_1 + 4 v_2 w_2$, (b) $\langle v, w \rangle = (v_1 + v_2)(w_1 + w_2)$.

$$u = \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix} v = \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} w = \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}.$$
(*) Bilinewrity: $c u + dv_{1} w > = (cu_{1} + dv_{1})w_{1} + 4((u_{1} + dv_{2}))w_{2} = (u_{1}w_{1} + 4u_{2}w_{2}) + d(v_{1}w_{1} + 4v_{2}w_{2}) = c - u_{1}w_{2} + d < v_{1}w_{2}.$
The same steps prove $c w_{1} (v + dw_{2}) = c - u_{1}w_{2} + d < u_{1}w_{2}.$
Symmetry: $c v_{1}w_{2} = v_{1}w_{1} + 4v_{2}w_{2} = w_{1}v_{1} + 4w_{2}v_{2} = 2w_{1}v_{1}.$
Positivity: $c v_{1}w_{2} = v_{1}w_{1} + 4v_{2}w_{2} = w_{1}v_{1} + 4w_{2}v_{2} = 2w_{1}v_{2}.$
Hen $v \neq 0$ $v_{1}^{2} + 4v_{1}^{2} > 0$ and when $v_{1} = v_{1} = 0$.
Thus $c u_{1}v_{2} = v_{1}v_{1} + 4u_{2}v_{2}$ is an inner product.
(b) We show that the Posstarity conditions violation $v_{1} = -v_{2}$ for example $v = (u_{1}v_{1})(v_{1}+v_{2}) = (v_{1}+v_{2})^{2}.$
Note that when $v_{1} = -v_{2}$ for example $v = (u_{1}v_{2})(v_{1}+v_{2}) = (v_{1}v_{2})(v_{2})$.