Math 310, Applied Linear Algebra
Spring 2019
Date: 03/04/2019

Name: $\frac{\text { Solutions }}{\begin{array}{l}\text { Midterm } 3 \\ \text { Time: } 50 \mathrm{mins}\end{array}}$

- DO NOT open the exam booklet until you are told to begin. You should write your name at the top and read the instructions.
- Organize your work, in a reasonably neat and coherent way, in the space provided. If you wish for something to not be graded, please strike it out neatly. I will grade only work on the exam paper, unless you clearly indicate your desire for me to grade work on additional pages.
- You may use any results from class or the text, but you must cite the result you are using. You must prove everything else.
- This exam contains 5 numbered problems. The

Problem		Points	Score
	1	15	
	2	25	
	3	20	
	4	20	
	5	20	
Total:		100	

- No books, notes, or electronic devices are allowed.

Definition 1. An inner product on the real vector space V is a pairing that takes two vectors $\mathbf{v}, \mathbf{w} \in V$ and produces a real number $\langle\mathbf{v}, \mathbf{w}\rangle \in \mathbb{R}$. The inner product is required to satisfy the following three axioms for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, and scalars $c, d \in \mathbb{R}$:

1. Bilinearity: $\langle c \mathbf{u}+d \mathbf{v}, \mathbf{w}\rangle=c\langle\mathbf{u}, \mathbf{w}\rangle+d\langle\mathbf{v}, \mathbf{w}\rangle$, and $\langle\mathbf{u}, c \mathbf{v}+d \mathbf{w}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle+d\langle\mathbf{u}, \mathbf{w}\rangle$.
2. Symmetry: $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{v}\rangle$.
3. Positivity: $\langle\mathbf{v}, \mathbf{v}\rangle>0$ whenever $\mathbf{v} \neq 0$, while $\langle\mathbf{0}, \mathbf{0}\rangle=0$.

Definition 2. A norm on a vector space V assigns a non-negative real number $\|\mathbf{v}\|$ to each vector $\mathbf{v} \in V$, subject to the following axioms, valid for every $\mathbf{v}, \mathbf{w} \in V$ and $c \in \mathbb{R}$:

1. Positivity: $\|\mathbf{v}\| \geq 0$ with $\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=\mathbf{0}$.
2. Homogeneity: $\|c \mathrm{v}\|=|c|\|\mathrm{v}\|$.
3. Triangle inequality: $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$.
4. (15 points) Which two of the vectors $\mathbf{v}=(1,4,1)^{T}, \mathbf{w}=(0,0,-1)^{T}$ and $\mathbf{u}=(-2,2,1)^{T}$ are closest to each other in distance for (a) the Euclidean norm? (b) the ∞ norm (c) the 1 norm.

$$
V-W=\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right) \quad V-u=\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right) W-u=\left(\begin{array}{c}
2 \\
-2 \\
-2
\end{array}\right)
$$

(a) $\|v-w\|_{2}=\sqrt{1^{2}+4^{2}+2^{2}}=\sqrt{21}$

$$
\begin{aligned}
& \|v-u\|_{2}=\sqrt{3^{2}+2^{2}+0^{2}}=\sqrt{13} \\
& \left\|W_{1}-u\right\|_{2}=\sqrt{2^{2}+2^{2}+2^{2}}=\sqrt{12}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \|v-w\|_{\infty}=\max \{1,4,2\}=4 \\
& \|v-4\|_{\infty}=\max \{3,2,0\}=3 \\
& \|v-4\|_{\infty}=\max \{2,2,2\}=2
\end{aligned}
$$

(c)

W and 4 are the closest ones by the EGdidean norm
w and u are the closest ones

$$
\|v-u\|_{\infty}=m a x\{3,2,0\}=3 \text { by the } \infty \text { norm }
$$

$$
\begin{aligned}
& \|v-w\|_{1}=|1|+|4|+|2|=7 \\
& \|v-4\|_{1} \approx|3|+12|+|0|=5 \\
& \|w-4\|_{1}=|2|+|2|+|2|=6
\end{aligned}
$$

2. (25 points) Characterize the image and kernel of the following matrices
(a) $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 6 & 7\end{array}\right)$, (b) $\left(\begin{array}{lll}1 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 5 & 4\end{array}\right)$.
(a)

$$
\text { (a) } A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 6 & 7
\end{array}\right] \xrightarrow{R 2-3 R 1} \stackrel{[1}{\longmapsto}
$$

For the kernel $-2 z=0, z=0$ and $x+2 y+3 z=0$,

$$
\begin{aligned}
& x+2 y=0 \quad x=-2 y, \quad\left(\begin{array}{c}
-2 y \\
y \\
0
\end{array}\right)=y\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right) \quad \operatorname{ker}(A)=\operatorname{span}\left(\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)\right\} \\
& \operatorname{Im}(A)=\operatorname{span}\left\{\binom{1}{3},\binom{3}{7}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } A=\left[\begin{array}{lll}
1 & 3 & 2 \\
3 & 4 & 1 \\
1 & 5 & 4
\end{array}\right] \xrightarrow[R 3-R 1]{R 2-3 R 1}\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & -5 & -5 \\
0 & 2 & 2
\end{array}\right] \xrightarrow{R_{3}+\frac{2}{3} R 2}\left[\begin{array}{ccc}
11 & 3 & 2 \\
0 & -5 & -5 \\
0 & 0 & 0
\end{array}\right] \\
& \operatorname{Im}(A)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right),\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)\right\} .
\end{aligned}
$$

For the Kernel

$$
\begin{array}{ll}
-5 y-5 z=0 & y=-z \\
x+3 y+2 z=0 & x-3 z+2 z=0 \quad x=z \cdot\left(\begin{array}{c}
z \\
-z \\
z
\end{array}\right)=z\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
\end{array}
$$

3．（20 points）Prove that if $\langle\mathbf{u}, \mathbf{v}\rangle$ and $\langle\langle\mathbf{u}, \mathbf{v}\rangle\rangle$ are two inner products on the same vector space V ，then their sum $\langle\langle\langle\mathbf{u}, \mathbf{v}\rangle\rangle\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\langle\mathbf{u}, \mathbf{v}\rangle\rangle$ is an inner product on V ．The definition of the inner product is on the front page．
We have to verify the 3 axioms of the inner product：
（1）Bil\｛neasity：$\langle<c u+d v, w \gg\rangle=\langle c u+d v, w)+\langle<c u+d v, w\rangle\rangle=$

$$
\begin{aligned}
& =c\langle u, w\rangle+d\langle v, w\rangle+\langle\langle\langle u, w\rangle+d\langle\langle v, w\rangle\rangle= \\
& =c(\langle u, w\rangle+\langle u, w\rangle)+d(v, w\rangle+\langle v, w\rangle)=c \lll u, w\rangle\rangle\rangle+d\langle u v, w\rangle) \text {. } \\
& \text { Similarly } 4 \ll u,(v+d w \gg)=c \lll u, v \ggg+d \ll u, w \ggg \text {. }
\end{aligned}
$$

（2）Symmetry：

$$
\begin{aligned}
& \langle\langle u, v\rangle\rangle=\langle u, v\rangle+\langle\langle u, v\rangle\rangle=\langle v, u\rangle+\langle\langle v, u\rangle\rangle= \\
= & \langle\ll v, u\rangle \gg .
\end{aligned}
$$

（3）Positivity：$\ll v, v \ggg=\langle v, v\rangle+《 V, v\rangle$ If $V \neq 0\langle v, v\rangle>0$ and $<v, v \ggg 0$
Thus 《＜V，V＞＞＞＞0
If $V=0 《<v, v \ggg=0+=0$ ．
4. (20 points) Let $\mathbf{K}=\left(\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right)$. Prove that the associated quadratic form $q(\mathbf{x})=\mathbf{x}^{T} \mathbf{K} \mathbf{x}$ is indefinite by finding a point \mathbf{x}_{+}where $q\left(\mathbf{x}_{+}\right)>0$ and a point \mathbf{x}_{-}where $q\left(\mathbf{x}_{-}\right)<0$.

$$
\begin{aligned}
& q(x)=x^{+} k x, \text { let } x=\binom{x_{1}}{x_{2}} \\
& q(x)=\left(x_{1} x_{2}\right)\left(\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=x_{1}^{2}+6 x_{1} x_{2}+4 x_{2}^{2}
\end{aligned}
$$

Let $X_{+}=\binom{1}{1}$ we get $q\left(x_{+}\right)=11>0$.
Next, let $x_{-}=\binom{1}{-1}$ we get $g\left(x_{-}\right)=-1<0$.
5. (20 points) Which of the following formulas define norm on \mathbb{R}^{3}. The definition of the norm is on the front page.

$$
\text { For } \mathbf{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right), \text { (a) }\|\mathbf{v}\|=\max \left(\left|v_{1}\right|,\left|v_{2}\right|,\left|v_{3}\right|\right), \quad(\mathrm{b})\|\mathbf{v}\|=\left|v_{1}\right|+\max \left(\left|v_{2}\right|,\left|v_{3}\right|\right)
$$

We have to verify the 3 axioms of the norm: Let $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$
(a) $\|v\|=\max \left\{\left|v_{1}\right|,\left|v_{2}\right|,\left|v_{3}\right|\right\rangle$.
(1) Positivity: Since $\left|v_{1}\right| \geqslant 0,\left|v_{2}\right| \geqslant 0 \quad\left|v_{3}\right| \geqslant 0$ then $\max \left\{\left|v_{1}\right|,\left|v_{2}\right|,\left|v_{1}\right|\right\} \geqslant 0$. If $\| v| |=0$, then $\max \left\{\left|v_{1}\right|,\left|v_{2}\right|,\left|v_{3}\right|\right\}=0$ which implies that $\left|v_{1}\right|=0,\left|v_{2}\right|=0 \quad\left|v_{3}\right|=0$ thus $v_{1}=v_{2}=v_{3}=0$ and $v=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
(2) Homogen eity: $\quad c v=\left(\begin{array}{cc}c & v \\ c & 2 \\ c & v_{3}\end{array}\right)$

$$
\begin{gathered}
||c v||=\max \left(\left|e v_{1}\right|,\left|c v_{2}\right|,\left|c v_{3}\right|\right)= \\
=\max \left(|c|\left|v_{1}\right|,|e|\left|v_{1}\right|,|c|\left|v_{3}\right|\right)=|c| \max \left(\left|v_{1}\right|,\left|v_{2}\right|,\left|v_{3}\right|\right)=\|v\|
\end{gathered}
$$

(3) Triangle Inequality: $\|u+v\| \leqslant\|u\|+\|v\|$.

$$
\begin{aligned}
& u+v=\left(\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
u_{3}+v_{3}
\end{array}\right) .\|u+v\|=\max \left(\left|u_{1}+v_{1}\right|,\left|u_{2}+v_{2}\right|,\left|u_{3}+v_{3}\right|\right) \leqslant \\
& \leqslant \max \left(\left|u_{1}\right|+\left|v_{1}\right|,\left|u_{2}\right|+\left|v_{2}\right|,\left|u_{3}\right|+\left|v_{3}\right|\right) \leqslant \max \left(\left|u_{1}\right|,\left|u_{2}\right|,\left|u_{3}\right|\right)+ \\
& +\max \left(\left|v_{1}\right|,\left|v_{2}\right|,\left|v_{3}\right|\right)=\|u\|+\| v| | .
\end{aligned}
$$

Thus $\|V\|=\max \left(\left|V_{1}\right|_{1}\left|V_{2} l_{1}\right| v_{3} \mid\right)$ is a norm.
$\begin{array}{ll}\text { (b) }\|v\|=\left|v_{1}\right|+\max \left(\left|v_{2}\right|,\left|v_{3}\right|\right) . & v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \\ \text { (1) Positivity: }\end{array}$
Since $\left|v_{1}\right|,\left|v_{2}\right|$ and $\left|v_{3}\right| \geqslant 0 \quad| | v| |=\left|v_{1}\right|+\max \left(\left|v_{2}\right|,\left|v_{3}\right|\right) \geqslant 0$
and $\& f \quad||v||=0 \quad\left|v_{1}\right|=\left|v_{2}\right|=\left|v_{3}\right|=0$, thus $v_{1}=v_{2}=v_{3}=0$.
(2) Homogeneity. $\quad c v=\left(\begin{array}{l}c v_{1} \\ c v_{2} \\ c v_{3}\end{array}\right)$

$$
\|c v\|=\left|c v_{1}\right|+\max \left(\left|c v_{2}\right|_{1}\left|c v_{3}\right|\right)=|c| \cdot\left(\left|v_{1}\right\rangle+\right.
$$

$+\max \left(\left|v_{2}\right|,\left|v_{3}\right| \mid\right)=|c| \cdot\|v\|$.
(3) Triangle Inequality:

$$
\begin{aligned}
& \|u+v\|=\left|u_{1}+v_{1}\right|+\max \left(\left|u_{2}+v_{2}\right|,\left|u_{3}+v_{3}\right|\right) \leqslant \\
\leqslant & \left|u_{1}\right|+\left|v_{1}\right|+\max \left(\left|u_{2}\right|+\left|v_{2}\right|,\left|u_{3}\right|+\left|v_{3}\right|\right) \leqslant \\
\leqslant & \left|u_{1}\right|+\max \left(\left|u_{2}\right|,\left|u_{3}\right|\right)+\left|v_{1}\right|+\max \left(\left|v_{2}\right|,\left|v_{3}\right|\right)= \\
= & ||u||+||v||
\end{aligned}
$$

Thus $\|v\|=\left|V_{1}\right|+\max \left(\left|V_{2}\right|,\left|V_{3}\right|\right)$ is a norm.

