Solutions

Math 310, Applied Linear Algebra Spring 2019 Date: 03/04/2019

Midterm 3 Time: 50 mins

Points

Score

Name:

Problem

- DO NOT open the exam booklet until you are told to begin. You should write your name at the top and read the instructions.
- Organize your work, in a reasonably neat and coherent way, in the space provided. If you wish for something to not be graded, please strike it out neatly. I will grade only work on the exam paper, unless you clearly indicate your desire for me to grade work on additional pages.
- You may use any results from class or the text, but you must cite the result you are using. You must prove everything else.
- This exam contains 5 numbered problems. The last page is blank. Check to see if any pages are missing. Point values are in parentheses.
- 1
 15

 2
 25

 3
 20

 4
 20

 5
 20

 Total:
 100
- No books, notes, or electronic devices are allowed.

Definition 1. An inner product on the real vector space V is a pairing that takes two vectors $\mathbf{v}, \mathbf{w} \in V$ and produces a real number $\langle \mathbf{v}, \mathbf{w} \rangle \in \mathbb{R}$. The inner product is required to satisfy the following three axioms for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, and scalars $c, d \in \mathbb{R}$:

- 1. Bilinearity: $\langle c\mathbf{u} + d\mathbf{v}, \mathbf{w} \rangle = c \langle \mathbf{u}, \mathbf{w} \rangle + d \langle \mathbf{v}, \mathbf{w} \rangle$, and $\langle \mathbf{u}, c\mathbf{v} + d\mathbf{w} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle + d \langle \mathbf{u}, \mathbf{w} \rangle$.
- 2. Symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$.
- 3. Positivity: $\langle \mathbf{v}, \mathbf{v} \rangle > 0$ whenever $\mathbf{v} \neq 0$, while $\langle \mathbf{0}, \mathbf{0} \rangle = 0$.

Definition 2. A norm on a vector space V assigns a non-negative real number $||\mathbf{v}||$ to each vector $\mathbf{v} \in V$, subject to the following axioms, valid for every $\mathbf{v}, \mathbf{w} \in V$ and $c \in \mathbb{R}$:

- 1. Positivity: $||\mathbf{v}|| \ge 0$ with $||\mathbf{v}|| = 0$ if and only if $\mathbf{v} = \mathbf{0}$.
- 2. *Homogeneity*: $||c\mathbf{v}|| = |c|||\mathbf{v}||$.
- 3. Triangle inequality: $||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}||$.

$$V - W = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} \quad V - U = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} \quad W - U = \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}$$

(a)
$$\|V - v\|_{2} = \sqrt{\frac{2}{4} + \frac{2}{4} + \frac{2}{2}} = \sqrt{\frac{2}{21}}$$

 $\|V - v\|_{2} = \sqrt{\frac{3^{2} + \frac{2^{2}}{4} + \frac{2^{2}}{4}} = \sqrt{\frac{3^{2}}{31}}$
 $\|V - v\|_{2} = \sqrt{\frac{3^{2} + \frac{2^{2}}{4} + \frac{2^{2}}{4}} = \sqrt{\frac{3^{2}}{31}}$
 $\|V - v\|_{2} = \sqrt{\frac{2^{2} + \frac{2^{2}}{4} + \frac{2^{2}}{4}} = \sqrt{\frac{3^{2}}{21}}$
 $\|V - v\|_{2} = \sqrt{\frac{2^{2} + \frac{2^{2}}{4} + \frac{2^{2}}{4}} = \sqrt{\frac{3^{2}}{21}}$

(b)
$$\|v - vx\|_{\infty} = \max \{1, 4, 2\} = 4$$
 vie and u are the closest ones $\|v - 4\|_{\infty} = \max \{3, 2, 0\} = 3$ by the so norm $\|v - 4\|_{\infty} = \max \{2, 2, 2\} = 2$

$$(C) ||v - w||_{1} = ||| + |4| + |2| = 7 V and w are ||v - y||_{1} = |3| + |2| + |0| = 5 the closesf ones ||vr - y||_{1} = |3| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 6 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| = 2 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| = 2 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| = 2 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| = 2 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| = 2 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| = 2 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 2 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 2 bj the losesf ones ||vr - y||_{1} = |2| + |2| + |2| + |2| = 2 bj the losesf ones$$

 $2.\ (25 \text{ points})$ Characterize the image and kernel of the following matrices

$$(a) \begin{pmatrix} 1 & 2 & 3 \\ 3 & 6 & 7 \end{pmatrix}, (b) \begin{pmatrix} 1 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 5 & 4 \end{pmatrix}.$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 6 & 7 \end{bmatrix} \xrightarrow{R2-3RI} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & \underline{-2} \end{bmatrix}$$

$$F \circ F \quad \text{the Kernel} \quad -2 \quad 2 = 0 \quad 7 = 0 \quad \text{and} \quad K + 2y + 3 \quad 7 = 0,$$

$$X + 2y = o \quad X = -2y, \quad \begin{pmatrix} -2y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \quad \text{ker}(A) = span\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix} \}.$$

$$I = M(A) = span\{ \begin{pmatrix} -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ -7 \end{pmatrix} \}.$$

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 5 & 4 \end{bmatrix} \xrightarrow{R2 - 3R1}_{I = 3} \begin{bmatrix} 1 & 3 & 2 \\ 0 & -5 & -5 \\ 0 & 2 & 2 \end{bmatrix} \xrightarrow{R3 + \frac{2}{3}R2}_{I = 3} \begin{bmatrix} 1 & 3 & 2 \\ 0 & -5 & -5 \\ 0 & 0 & 3 \end{bmatrix}$$

$$T m (A) = span \left\{ \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix} \right\},$$

For the Kernel

$$-Sy - Sz = 0 \qquad y = -z \qquad x - 3z + 2z = 0 \qquad x = z \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right) = z \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \left(\frac{z}{-z} \right)$$

3. (20 points) Prove that if $\langle \mathbf{u}, \mathbf{v} \rangle$ and $\langle \langle \mathbf{u}, \mathbf{v} \rangle \rangle$ are two inner products on the same vector space V, then their sum $\langle \langle \langle \mathbf{u}, \mathbf{v} \rangle \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \langle \mathbf{u}, \mathbf{v} \rangle \rangle$ is an inner product on V. The definition of the inner product is on the front page.

4. (20 points) Let $\mathbf{K} = \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix}$. Prove that the associated quadratic form $q(\mathbf{x}) = \mathbf{x}^T \mathbf{K} \mathbf{x}$ is indefinite by finding a point \mathbf{x}_+ where $q(\mathbf{x}_+) > 0$ and a point \mathbf{x}_- where $q(\mathbf{x}_-) < 0$.

$$q_{1}(x) = x^{T} K x, \quad \text{let} \quad x = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$q_{1}(x) = \begin{pmatrix} x_{1} & x_{2} \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} = x_{1}^{2} + 6 x_{1} x_{2} + 4 x_{1}^{2}$$

$$\text{Let} \quad X_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{we get} \quad q_{1}(x_{1}) = 11 > 0.$$

$$\text{Werty let} \quad X_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \text{we get} \quad q_{2}(x_{1}) = -1 < 0.$$

5. (20 points) Which of the following formulas define norm on \mathbb{R}^3 . The definition of the norm is on the front page.

For
$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
, (a) $||v|| = \max(|v_1|, |v_2|, |v_3|)$, (b) $||v|| = |v_1| + \max(|v_2|, |v_3|)$
When have to verify the 3 existing of the norm. Let $V = \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}$
If $V|| = \max(||v_1|, |v_1|, |v_3|)$.
(a) Possidivity: $S \le v \in (|V_1| > 0, |V_2| > 0, |V_3| > 0 \text{ then}$
max $\{|v_1|, |v_1|, |v_3|\} > 0$. If $||v|| = 0$, then max $\{|V_1|, |V_1|, |V_3|\} = 0$ which
implies that $|V_1| = 0, |V_2| = 0$ then $v_1 = v_2 = v_3 = 0$ and $v = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
(c) Homogeneity: $cv = \begin{pmatrix} cv \\ cv_3 \\ cv_3 \end{pmatrix}$
 $||cv|| = max (|c||v_1|, |c||V_2|) = |c||max (|v_1|, |v_1|, |v_3|) = ||v||$.
(3) Triangle Inequality: $||u + v|| = \max(|v_1|, |v_2|, |v_3|) = ||v||$.
 $u + v = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix}$. If $u + v|| = \max(|v_1|, |u_2|, |u_3|) + max(|v_1|, |v_3|) = ||u|| + ||v||$.
Thus $||v|| = max (|V_1|, |v_2|, |V_3|)$ is a norm.

(b)
$$\|v\| = \|v_1\| + \max(\|v_1\|, \|v_3\|)$$
.
(c) Positivity:
 $Since \|v_1\|, \|v_2\|$ and $\|v_3\| > 0$ $\|v\| = \|v_1\| + \max(\|v_2\|, \|v_3\|) > 0$
and if $\|v\| = 0$ $\|v_1\| = \|v_2\| = \|v_3\| = 0$, thus $v_1 = v_2 = v_3 = 0$.
(2) Homogenesity $- cv = \begin{pmatrix} cv_1 \\ cv_2 \\ cv_3 \end{pmatrix}$
 $\|cv\| = \|cv_1\| + \max(\|vv_1\|, \|cv_3\|) = \|c\| (\|v\| + max(\|v_2\|, \|v_3\|)) = \|c\| (\|v\| + max(\|vv_1\|, \|vv_3\|)) = \|c\| (\|vv\| + max(\|vv\|, \|vv_3\|)) = \|v\| (\|vv\| + max(\|vv\|) + max(\|vv\|)\|) = \|v\| (\|vv\| + max(\|vv\|) + max(\|vv\|)\|) = \|v\| (\|vv\|)$

Thus
$$||v|| = |V_1| + max(|V_2|, |V_3|)$$
 is a norm.